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During the period of the grant we continued our modeling and analysis of
the mechanical behavior of complex composite materials. We have developed
analytical and numerical modeling techniques of the influence of general com-
posite laminate orientation on the ultrasonic behavior of anisotropic plates
and substrates. In the second phase we introduced piezoelectric effects into
our modeling. [n the final phase we studied the dynamic response of the lay-
ered composite to transient loadings in the form of time dependent sonrce
loads. Complete documentation of the results of the first two phases were
submitted to the AFOSR in the form of yearly reports. Since these reports
contained completed items which also appeared in the literature as archival
publications, we need not rereport them here. Results for the recently com-
pleted works have also been prepared for journal publication. Description of

these works are included here in details.




Chapter 1

WAVE PROPAGATION IN
ANISOTROPIC MEDIA DUE
TO INTERNAL HARMONIC
LINE LOADS

1.1 Introduction

Plane harmonic wave interaction with homogeneous elastic anisotropic media,
in general, and with layered anisotropic media, in particular, have been ex-
tensively investigated in the past decade or so. This advancement has Leen

prompted, at least from a mechanics point of view, by the increased use of

advanced composite materials in many structural applications. Being both
anisotropic and dispersive, composite materials required indepth understand-
ing of their mechanical behavior. The list of relevant literature is rather long
and we thus refer the reader to selective recent works for further representative
references [1-6]. Some of the difficulties inherent in the treatment of wave prop-
agation in anisotropic media can be illustrated by considering slowness wave

surface methods for infinite media [1,7-9] (Synge. 1957; Fedorov, 1968: Mus-




grave, 1970). According to this analvsis. the slowness surface of an isotropic
material consists of two concentric spherical sheets. an inner one representing
the longitudinal wave mode and an outer one representing the two degenerate
transverse modes. In the anisotropic case, we find there are three general wave
surfaces, one for the so-called quasi-longitudinal wave and two nondegenerate
sheets for the quasi-transverse waves. Moreover. the surfaces will no longer
be spherical in shape but will reflect the elastic symmetry or assymetry of the
material. Perhaps the most severe consequence of elastic anisotropy in infinite
media is the loss of pure wave modes for general propagation directions. This
fact also implies that the direction of energy flow {i.e.. group velocity) does
not generally coincide with the wave vector, or wavefront normal. Clearly.
uncoupled pure potentials (such as are found in the isotropic case) are much
simpler to treat than the mixed modes characteristic of anisotropic materials.
For wave propagation in directions of symmetry some wave types revert to
pure modes, leading to a simpler characteristic equation of lower order. A
key condition which we found to facilitate our previous analysis is that at
any boundary all wave vectors must lie in the same plane. This requirement
implies that the response of the media will be independent of the in-plane
coordinate normal to the propagation direction. We therefore conducted all of
our analysis in a coordinate system formed by the line load direction and its
normals rather than one determined by material symmetry axes. This choice
lead to a significant simplification in our algebraic analysis and computations.
Compared to the extensive literature on the interaction of plane harmonic
waves with anisotropic media, very little work is available on the response of
such media to concentrated source loading. Here concentrated sources include
point as well as line loads. Harmonically pulsating and transient sources are

common types of such ioading. Understanding the response of elastic solids to




internal mechanical sources has long been of inierest to researchers in classi-
cai fields such as acoustics, seismology, as well as modern fields of application
like ultrasonics and acoustic emission. It is known that whenever a material
undergoes a local failure. elastic waves are generated due to the rapid release
of localized strain energy. Such radiation. for example, is known as acoustic
emission in the field of nondestructive testing of materials. In seismology it is
of course known by the earthquake.

A quick review of available literature on this subject reveals that most of
the work done so far is carried out on isotropic media. The effect of imposed
line load in homogeneous isotropic media has been discussed by several in-
vestigators ever since Lord Rayleigh discovered the existence of surface waves
on the surfaces of solids [10]. An account of the literature dealing with this
problem through 1957 can be found in Ewing, Jardetsky and Press [18]. Most
of the earlier work {13-15] followed Lamb [11,12]. who apparently was the first
to consider the motion of semi-infinite space caused by a vertically applied
line load on the free surface or within the medium. He was able to show that
displacements at large distance consists of a series of events which corresponds
to the arrival of P-, S-, and Rayleigh surface wave. The analytical approach
used in the above mentioned investigations and others [13-15] can be summa-
rized as follows ; the steady state problem for harmonic waves propagating
in infinite isotropic media is solved at first and then generalized to the case
of half-space using superposition technique. For transient source loading re-
sults can be obtained from those corresponding to harmonic ones by a Fourier
integral approach.

In this paper, we closely follow the formal developments in our previous
works {1-6] and study the response of several anisotropic systems to harmoni-

cally pulsating buried line loads. These include infinite, semi-spaces and plate




systems. Our analysis will be carried out on anisotropic media possessing
monoclinic or higher symmetry. The load will be in the form of a normal
stress load acting at an arbitrary direction within the materials in the plane
of symmetry. We use a building block approach in which we start by driving
results for an infinite media. Subsequently we obtain the results for half-spaces
by using superposition of the infinite medium solution together a scattered so-
lution from the boundary. The sum of both solutions has to satisfy stress free
boundary conditions thereby leading to complete solution. Lastly we proceed
to develop solutions for a plate by insuring both the infinite media solution and
the scattering solution to satisfy the two free surface of the plate. Our work
will be easily executed by using the linear transformation approach in which
we identify the line load with the r, direction. This implies that all involved
field variables will be independent of the r, direction. Nevertheless. and in
general we will have three nonvanishing particle displacements. Material sys-
tems of higher symmetry, such as orthotropic, transversely isotropic, cubic,
and isotropic are contained implicitly in our analysis. The equivalent crystal
systems of monoclinic, orthohombic, hexagonal and cubic may be substituted
for the elastic material systems analyzed here. We demonstrate numerical re-
sults results drawn from concrete examples of materials belonging to several
of these symmetry groups. For orthotropic and higher symmetry materials
where the remaining two principal axes lie in the plane of the plate, the parti-
cle motions in the saggital and the normal to it uncouple if propagation occurs

along either of these in-plane axes.

1.2 Theoretical development

Consider an infinite anisotropic elastic medium possessing monoclinic symme-

try. The medium is oriented with respect to the reference cartesian coordinate




system z; = (x],z5,25) such that the r} is assumed normal to its plane of
symmetry as shown in figure 1. The plane of symmetry defining the mono-
clinic symmetry is thus coincident with the r} —z, plane. With respect to this
primed coordinate system, the equations of motion in the medium are given
by [1]

do; ,0%u!

[T

2

(1.1)
and, from the general constitutive relations for anisotropic media,
7 N v N
o-l'j :'C:']'kle';cl, Z,J,k,lz 1,2,3 (1.2)

by the specialized expanded matrix form to monoclinic media

oy chy iy a3 0 0 ¢y el

T2 Cha ¢ Cp3 0 0 €y

o | _lcas & oy 0 0 oy €33 (1.3)
oa| |0 0 0 dy s O Y23 )
13 0 0 0 s s 0 T3

Ol e € g 0 0 cg \ Y1z

where we used the standard contracted subscript notations 1 — 11, 2 — 22,
3 — 33,4 23,5 — 13, and 6 — 12, to replace ¢;;ui(7,7,k,1 = 1.2,3) with
Cp(Pyq = 1,2,...,6). Thus, c45 stands for ¢33, for example. Here 0i;. €, and
u, are the components of stress, strain and displacement, respectively, and
p' is the material density. In Eq. (3), 7; = 2e;; (with ¢ # j ) defines the
engineering shear strain components.

In what follows, we study the response of the infinite medium to a uniform
harmonic line load applied along a direction that makes an arbitrary azimuthal
angle ¢ with the z] axis. That is, the direction ¢ = 0 coincides with the
reference coordinate zj. Since, as was pointed out in the introduction, the
response of the medium to such a wave is independent of the applied line

direction, we conduct our analysis in a transformed coordinate system r; =




(L1, L2, r3) formed by a rotation of the plane z{ — z) through the angle o
about the 1’y direction. Thus, the direction r, will coincide with the line load
direction.

Since ¢, 18 a fourth order tensor, then for any orthogonal transformation

of the primed to the non-primed coordinates, i.e., it transforms according to
Cijkl = 3zm»’3jm’3ko/31pdnno,, (1.4)

where 3;; is the cosine of the angle between r! and r, | respectively. For a
rotation of angle o in the z} — &}, plane, the transformation tensor j3;, reduces

to

cosg sing 0
Bi; =| —sing cos¢ 0 (1.3)
0 0 1

If the transformation (5) i1s applied to Eq.(3), one gets

o1 cn a2 ¢z 0 0 ce €11

22 ciz €2 c3 O 0 e €22

d33 - | ©13 €3 Ca3 0 0 cu €33 (1.6)
023 0 0 0 c44 s O Y23 '
13 0 0 0 ¢s5 c5 O "3

012 cie ¢ cx 0 0 ces Mz

where the relations between the c,, and ¢, entries are listed in [5]. Notice
that, no matter what rotational angle ¢ is used, the zero entries in Eq.(3) will
remain zero in Eq.(6). In terms of the rotated coordinate system rj, we also

write the momentum equations as

(90,“ E)'zu.- -
— 4 fi=ps (1.7)
0.73]' ot
As mentioned earlier, in the rotated system, the elastic wave equations, for
wave propagating in the z; — z3 plane, are independent of z, . Nevertheless,

the particle motion can generally have three nonzero components uy, u;, and
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uz. We identify the u, displacement as belonging to the horizoutally polarized
(SH) wave. Here, the equations describing these three wave motions are cou-
pled, complicating the analysis of free waves in the medium. In terms of the

displacement components the equations are written in the expanded form

J* 0? & o

{Cnd = + C)aaa‘s]ul + [Cab() 5 + Cas .)‘r;ju‘z
di [(c1a + ¢55) )‘f‘ Juy = pa;’i‘ ~ /i (8a)

[Clﬁ—.d%;? + 645%]111 + [casda—:; + 644%}&:
+6._8rg[(636+645)5%]u3 = p d;;iz — f2 (8D}

5%[(613 + Csa)dxxful + 58—3[(636 + st)a_(:i;}“z
+[(‘55‘(,;2':? + 033:2;]113 = 65;3 — f3 (Sc)

with

fi = Qid(x1)8(x3) F(t) (1.9)

1.3 Source characterization

Using the above geometric arrangement we proceed to describe the line load
by a direc delta body force function located at the arbitrary location (r3 = £§
)- This choice of source location is arbitrary and is not necessary for the cases
of propagation in either the infinite nor the semi-infinite media. However, as
will be shown, this choice will lead to great simplification in the algebraic ma-
nipulation for the propagation in the plate. Solutions to the present problem

can be accomplished by following the procedure used by Achenbach [20]. Ac-

cording to this procedure, the infinite space can be thought of as consisting




of two semi-spaces whose artificial interface contains the applied load. Thus
the upper hz'f-space occupies the region ry > 5 whereas the lower half-space
occupies the region w3 < rj. As a result of this. appropriate condition 1..ast
be specified at the artificial interface.

In order to be able to specify these int rface conditions we consider a very
thin “interface” layer extending from 23 = 2§ — 0 to 13 = r§ + 0. We then
start by requiring continuity on the displacement components and their time

derivatives. namely

P
ri+0

u,(zl.rg.t)bgw = 0 {10a)
(')(")u,-(xl.m.t) P40 . R .
at(’” Iri’—o = 0. t=1.2.3 (H)}))

Integrating Eqs.(8a,b.c) across the interface layer and using the continuity
equations({10a.b), leads to the discontinuity in the displacement spatial deriva-

tives resulting in the following jump conditions.

d Juy P40 ‘
(essmmt + cas =2 )37 = —Qy8(r)) F (1) (11a)
I
ey +eug 5 = ~Quble)F(Y) (11b)
. ;
cagg—’f SR = —Qab(n)F() (11c)
3 3

Now, let’s consider the special case where @y = @, = 0 and Q3 = Q. For this

situation equations (11) reduce to.

duy Juy 4o :
Sidind AN E = 0 12
(¢35 D7 + Cy5 023 )lrg_o (12a)

du,y duy Pio
il At RV = 0 12t
(us‘{.)jxa + Cq4aI3)[r§_o (12h)
U3 rP4o F ) AT
e, =0mls_, = —Qz)F(t) (12¢)
Ty 3 3




Examination of the relations (12a.b) reveals that. if (cyes55 — ¢i5) does not
vanish ( wiich is the case ), then u; and w, must be at least constant and.
in accordance with (10), equal. We choose this constant as zero and thus
conclude that u; and u; vanish at the interface. Finally. we satisfy the normal
stress discontinuity condition (13c) by assigning

Jdu. R du . ]
cng—;—zlxm = =Qo(z1)F(t)/2, C33}‘);§ 2o = Q8(r ) F(1)/2 {1.13)

Collecting the above conditions we finally sumimnarize the condition at the
artificial interface as

Uy = 0
ty = 0
(9113

gt = ~ Q8 (1)

for ry > 2§ at 3 = 1} (1.14)

7

3
U.]ZO

u2=0

g = 5Q8(z)F (1)

, for ry < 1} at x3 = 1§ (1.15)

1.4 Formal solution

Following the procedure of {1}, we outline the steps leading to a formal solutions
of Egs.(8a.b.c) for each of the two semi-spaces. Since the body force has been
replaced by a "boundary” condition. we drop f; from Egs(8a.b,c). We then
assume harmonic solutions followed by applying the Fourier transform to these

equations in accordance with

w, = @, (16a)
oS .

h, = e dg (16b)
-0
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The general solution of the resulting differential equations is then sought in
2 2 ! g

the form

leading to the characteristic equation
A A A [
.\1-)_ .\32 A2z (2 = 0 { 1 1?\\;
.\13 .\23 \3.3 l"i
where the various entries A;; are given in Appendix A. Note from (18} that
the \;; matrix 1s symmetric.

For the existence of nontrivial solutions in U; the determinant in Eq. (13},
must vanish giving an algebraic equation relating o to w. This is obviously an
alternative presentation of Christoffel equation{l]. The diff-rence is that we
are now solving for « in terms of w as compared with solving for the phase
velocity for a siven propagation direction. Setting the determinant equal to
zero, one obtains a sixth order equation in « (cubic in a?) which is written

symbolically as
Ae® + Aot + Azab 4+ A4,=0 (1.19)

with its coeflicients are given in Appendix B. Eq.(19) admits six solutions for

«. These a's have the further properties that
Oy = —Qp, Gy = —03, (g = — Q3 “.30)

Furthermore for each o, equation( (8) yields tiie displacement amplitude ratios
v, = L‘rgq/(,,"]q, w, = [J'gq/Ulq

_ __:\111\23—1\321‘\13 (21a;
A2Ags — A

iy - ;\ni\‘m - /\13‘\2‘2 (711))

R NosAas — A i

v q




Finally, using superposition, we write the formal solutions for the displace-

ments of equations {3a.b.c) and their associated stress components using Eq. (6}

as
° P
(Uy, . u3) = Z(I Vg, zL’?)(',qe"’"’(r"'IJ] 11.22)
9=l
5 1 4
(633.013.023) = Z(D1q~, D,,. Dsq)l/}qfi-'*"'(r"‘”%) (1.23)
7=1
where
Dy, = jéles + caevy) — ez wy (1.24)
qu = C:,s(]qu - aq) — Cy5Q5V, (123)
D3, = cs{j€w, — ap) — cag0,v,, g=1,2,..,6 (1.26)

With reference to equation the relation (2J) and to the \,;; entries of Appendix
A and by inspection of equations (20) and (24-26). one recognizes the relations

(see Ref.[2])

U =, Uy -~ Uz, Vg = U5

two = —uw, Wy = —Ws, We = —W;s

Dy; = Dn, Dy = Dy, Dy = Dys (1-27)
Dy = =Dy, Dyy = —Daz, Dy = ~Dys

Dsz '—’“‘Dax, Du =—D:33, Dse =“Dss

The above solutions with their various properties can now be specialized to
both artificial half-spaces by the following steps. Inspection of the above so-
lutions indicate that each consists of three pairs of wave components, each
pair propagating in mirror image fashion with respect to the interface. namely
along positive and negative r3-directions. Since propagation is expected to

emanate from the interface into both media, we arbitrary reserve ¢;,q3. and

12




qs for the lower half-space; the remaining one’s. namely deseribed with g,0q,.
and gg for the upper one. We list the formal solution iy the lower and lower

half-spaces according to

(s = 3 (Lo e o=
9=1.3.5 .
((3;3;3.(}13.(3'2:3) ; Z ([)l-;- Dgw1)37)(-”(-—ﬂqlr}—-x";) Iy 2z I il
=133 ]
(. g, ug) = (1.v,, u.'q)(‘.']qe'ﬂq(l’}—r;’;} 3
=246 . ;
(a3, 013, Ta3) Q= 3 (D, Do, D3,,)I,'w€-<>q(rx—r{j) ey < (1
§=24.8

1.5 Solutions in infinite media

At this point. we have presented a formal solntion of the field equation in a
mounoclinic medium. The amplitudes Ly, are the unknowns. The amplides
Uy, will now be determined by implementing the artificial interface conditions
(14-15). To this end. if (28) is subjected to the conditions (I4) and (29} to

{15), one finally solves the displacement amplitudes as

Ui= Ui = (03— 3)Q/(2essDon) (303
Uiy =~Uy = (v; —v5)Q/(2c33Dum) (30b)
Uis=~Uis = (v3—v1)Q/(2c3Dum) (30c)

where
Dym = vi{azwz — asws) + vz(asws — aywy) + vs(eyw; — azws)(1.31)

[t is interesting to note that D,,, = 0 defines an equivalent Christoffel charac-

teristic equation for the propagation of bulk waves in the medium [-]. With

13
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these solutions for the wave amplitudes, solutions in the upper region can be
written in terms of ¢ = 1.3,5 as
e s e AP =1
(y, uq, u3) = Z (=1, —v,, w,)ly,e ralry = o)
1=13.5 (52 ) (1 3.,}
“ - - = -z i
(03,013, 023) = Z (‘qu- D'zq-, Daq)l-'xr,ﬁ afhTs
q=1,3.3
In summary, solutions (28) and (32) with the amplitude solutions (30) uniquely
define the propagation fields in the lower and upper “artificial” semi-spaces.

In other words, their combination constitute the total solutions for the infinite

medium.

1.6 Solution in half-spaces

We now adapt the solutions of the infinite media (28) and (32) to solve for
the case where the free boundary is intercepts the propagating pulse at some
arbitrary location parallel to the plane z3 = 0. We assume that the free
boundary is located at r3 = —d as depicted in figure 2. This implies that
the free boundary is located in the upper region and thus can only interfere
with the propagation fields in the negative r3 direction. For this case, the
solution (32) will constitute an incident wave on free surface. As a results
waves will reflect from the free boundary and propagate in the positive r;
direction. Thus, appropriate formal solutions for the reflected waves can be
adapted from the solution (28) in accordance with (Note now that r% does not

appear because solutions are referred to the origin r3 = 0)

(@, u5,5) = 3 (L. vg, wy) Uy €77 (1.33)
¢=1,3.5

(6330813, 0%) = D (Digy Dag. Dag)UT €77 (1.34)
q=1.3.5
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With this the total solution for the semi-space (designated with superseript
's') which is required to satisfy the stress free boundary condition is obtained

by superposing the incident waves and reflected waves in accordance with

(13, Z =1~y w )L,(;) ~aalri=s3)
5( v o (1.35
g=1.3.5
is  oas - o~ valet
(63.0%3.5%) = 2. (=D qu.Daq)( valry=x)
iy (1.36)
+ (Dige Dag, D3y U €777
7=1,3.5
The boundary condition is given by
O3 =033 =033,=0, atzrz=—d (1.37)

By imposing the boundary conditions {37) on Eq.(6). linear system is obtained
by

Dy Dw Dss U{; £, Ry
Dy Dza Dos era Es | = R (1.38)
D3y D3z Dss Ul Es R
where
Ry = —(UYDnE] +UR DB} + Ufy Dis EY) (39a)
Ry = (U"')DHE* + o""Dz3E' U“’ DasEY) (39b)
Rs = (U D';] ET + U D';gEr + [/ D';sE;) (‘39(‘)

Using the standard Cramer’s rule we solve the reflected amplitudes as

1
no= D.E (RiG11 — R3Gay + RsGyy) (40a)
sm 1
Uy = D* B (RyGh3 — Ry(iyg + RsGisz) (40b)
sm 443




1 :
Ui = (R1Ghs — RaGias + R5Giss) (40c)

Dsm E5
with
E, = e E] = e™lB4)  q=135 (1.41)
and
Dsm = D11G1y = Dy Gy + Da Gy (1.42)

where (,, are given in Appendix B. It is worth noting that D,,, = 0 defines
the characteristic equations for the propagation of Rayleigh (surface) wave on

the free surface [1]

1.7 Solution for infinite plates

We now consider the response to the line load in an infinite plates having the
thickness 2d. Since the elastic waves in the plates are reflected at both free
boundaries ;3 = d and ;3 = —d as shown in figure 3, the solutions are obvi-
ously more complicated than for the half space case, we however, the solution
procedures are the same. To this end, we adapt the solutions of the infinite
space (28,32) in order to solve for the case where the both free boundaries in-
tercept the propagating field. This implies that the free boundaries are in the
upper and lower semi-space and interfere with the propagation in the negative
and positive z3 directions. For this case, the both upgoing and downgoing
waves in the infinite space will constitute incident waves. As a result upgoing
waves will reflect from the free boundary z3 = —d and propagate in the posi-
tive x3 direction whereas downgoing waves will reflect from the free boundary
r3 = d and propagate in the negative z3 direction. Thus, total formal solu-

tions for the plate (designated with superscript 'p’) can be adapted from the

16




solution for the infinite space and free waves (i.e. the six scattered ones) in

accordance with

for the upper artificial layer (—d < z3 < 1)

(&f’ &g‘ &g) = Z (_..l’..Uq’wq)([}(;)e'ﬁq(rg‘r.‘s)
q=13,5

6 (1.43)

rr e~ XaT3
+o vy w

-~ A ~ ‘ —Q I'P—I
(U§370f396§3) = Z( Drg, Dy, DSq)L « 2)

g=1,3,5
6 {1.44)
+ (Dig, Dag, D3g)U7 ™27
9=1
for the lower artificial layer (2§ < z3 < d)
(a5, 35,83) = X (1,vqw)Ufjemoetm="0)
¢=1.3,5
6 (1.43)
F3 0 U
q=1
(&13’31 &f:}’ 6'}2’3) = Z (D1q7 D2q» D3Q)U( Jemaslza=ad)
qs=1,35 (1.46)
+Z(qu, ng, D&,)U{qe—aqxs
g=1

The polarized amplitude, U7, i

on the free surfaces given by

is again determined by applying the free traction

0'33 —013 =0A'g3_0, at x3=:‘s:d (1.47)

Now, substituting the solution for the plate (??,2?) into (??) with the aid of

(27) yields a linear system to be

DnEr  Duks  DisEs  DuEyr Diky  DiskEs Uty R
DykEr DpEy  DyEs —Dnky —Dypks —DaskEs Uls R,
Dy Ey DpEy  DisEs —DankEy —DyEs —DssEs is || Fs (1.48)
DuEl DlsEg DlsEg» Du Ey DuEs  DisEs U, R, o
~Dnky —DnE; —DyEs DukEr  DnpEs  DiskEs Ui R,
—DunEy —Dxnky —DiskEs DnEy DypEs  DssEs Ute Rs
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where, besides the definitions of Ry, R, and Rs of (39).

Ry = (UYDuE] +URDE; + Ul DisEY) | (49a)
Ry = (Ui‘l)DzléI+U1(;)023E1§+U1('5)D255;) (19b)
Re = (UWDyE] +UYDE; + U DysES) (49¢)
with

E, = e Ep = @0, g=135 (1.50)

After straight forward algebraic manipulation, the amplitude U7 is algebraically

simplified to

o . sinh{aad) sinh{asd
Uh=-Up = @ Dp,,fcf)t'r)l(asd)Dsfs)[(R”Hu — RooHuz)(HsaHas — Hsi Hyz)
-—(Rqs]l‘lfzx —(1)1%‘}4[;42)%1{22H11 - H12H21)] (51a)
- , sinh{a;d) sinh{«
013 = —Um = “Q me c;th(asd()Dsfs [(RIIH'H - Rz'szz)(Hust — HyHs;)
“(.331:13(1151‘1)— ﬁr{fsi‘l))(ﬂnﬂzl — Hy1 Ha)) (51b)
. - sinh{apd) sinh{«
bls = —U1s = Q me c:)th(agd)DSf3 [(RHHSI - RzzH:n)(Hust ~ HaHg)
—(RssHm - R44H62)(H12H31 - HuHsz)] (51c)
with
Dpm = —4cosh(oyd) cosh(azd) cosh(aszd)x

[Dllcll Coth(ald) - D]3Gl3 COth(a:;d) + 015615 COth(asd)]X
[D]IG“ tanh(ald) - 013G13 tanh(agd) + Dl5G15 tanh(a5d)] (152)

where Ry and Hy; are given in Appendix B. Note that D, = 0 defines the

characteristic equations for the propagation of free wave in the plate.
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1.8 Numerical results and discussions

In this section we present numerical illustrations of the above analysis. We
choose for our illusiration a graphite-epoxy composite material. The mi-
crostructure of this particular material has been extensively studied and mod-
els predicting its effective anisotropic properties are available elsewhere [1].
Based upon a 60% graphite fiber volume fraction these effective properties are

given with respect to the reference coordinate system z! as

15560 370 370 0 0 0
370 1595 433 0 0 0
370 433 1595 0 0 0 .
¢ij = 0 0 058 o o X100 [Nm]
0 0 0 0746 0
6 0 0 0 0 746

with p = 1.6 g/cm3. For a rotation of ¢ = 45°, for example, these properties
transform to

51.20 36.28 4.03 0 0 36.13

36.28 51.20 4.03 0 0 36.13

o = 403 4.03 16.00 0 0 031
v 0 0 0 6.64 0 0
0 0 0 0 6.64 0

36.13 36.13 0.31 0 0 40.02

x 10" [ N/m?]

which confirms the earlier conclusion that the transformed matrix takes the
format of monoclinic symmetry. Having chosen the material we now sum-
marize a "flow chart” like procedure for our subsequent calculations. After
specifying the azimuthal angle ¢ (namely, the line load direction) we proceed
in the first step to evaluate a's for given values of the wavenumber £. We then
sort out the various a’s in accordance with the required format of equation

(28-29). In the second step we evaluate the displacement ratios. By now, we
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are ready to calculate the inverse transforms in accordance with

| O . .
4 = = ;6771 dE, i=1,2.3 (1.53)
27 Je
Depending upon whether #; is symmetric or antisvmmetric, computational
effort would be greatly reduced. We first would like to present solutions to
symmetry situations. If a4 is symmetric with respect to §. Then v, will be
symmetric while w,, Dy, D,n, and D, will be antisymmetric with respect

to €. It then follows that @, and 4, are symmetric while 43 is antisymmetric.

Accordingly equation (?7) simplifies to

1 )

0 = —/ jiug sin(€z )dE, i=1.2 (54a)
1 oo

Uy = —/ 3 cos(€xy )dé (54b)
T Jo

The calculations of displacement and stress components are then formed straight-
forward, except at singularities. These singularities are poles corresponding
to the zeros of D,,, and D,,, namely, the characteristic equations for a sur-
face wave in the halfspace and free waves in the plate, respectively. We find
that the poles do not exist in the second and the fourth quadrant of figure 4.
namely for Re({) > 0 and Im({) < 0 and that D,,, of the infinite medium
has no poles. Thus, i, in the infinite space is integrated along the real £-axis.
Two different procedures have been used in dealing with these poles in the
integration process. The first requires the removal of these singularities from
the integrals. The second, based upon the work of Neerhoff et al [13]. merely
deforms the contour of integration below the real £-axis, as shown in figure
4, so that no poles occur on the path of integration. In order to optimize

accuracy, judicious choices of the parameter, §;, are required. The value of
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&, imaginary part of &, needs to be large enough to offset the contributions
of singular points, but not two large since it reduces the accuracy. In our
calculations, we choose the value & = 0.1.  For our numerical illustrations
we arbitrary choose the azimuthal angle ¢ = 45° and the angular frequency.
w = 3.0 x 10° rad/sec.

Figures 3-7 depict the displacement and a normal stress components
Uy, U9, U3, 43 In the media at the location z3 = —3 mm. The location of
the line load is chosen at the origin of the z; coordinate system for all three
geometries (infinite- and half-space, plate): thus @, and G335 are symmetric
with respect to 3 axis while @; and @, are antisymmetric. Note from the fig-
ures that the amplitudes of the displacement and stress component are slowly
decreasing with oscillations for a long distances from the location of line load
in the infinite and semi-infinite space. However, the amplitudes in the plate
are oscillating along the location r3 = —3 mm with persisting amplitudes.

Figures 8-10 present the displacement mode (4@;,u3) at various locations.
We calculate deformation fields at the locations designated by broken various
radii (2.4mm, 5.55mm, and 7.2mm in infinite media; 2.4mm and 5.55mm in
infinite media; and 4.0mm in the plate) away from the source location. For
these investigations the line load is located at the origin of z; coordinate system
in the infinite and half-space media, and at (0,0,1) in the plate. Solid curves
represent deformations defined by z; + @; x 102, 3+ i3 x 102. Note that in the
infinite media, %, is zero on the z, axis and that #3 has maximum amplitude
on the z3. However, in the semi-infinite space and the plate the displacement
fields are much affected by the reflected waves. The displacement amplitude

in the semi-infinite space is seen to be greater than that in the infinite space.
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Figure 1.1: A applied line load in an anisotropic infinite media
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Figure 1.9: Displacement modes in the half-space of graphite-epoxy. Broken
circles are chosen as receiver location (r;,z3) and solid curves are displace-
ments modes (z; + w4y X 102, 23 + 13 x 10?) with respect to broken circles. Free
surface is z3 = —5.55 mm and the line load is located at the origin of the
system.
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Appendix A

Various coeflicients of characteristic eq.(14) are given by

Ay = C.550t2 - c11{2 + pw2

A, = 64502 - 61652

Az = —jlalcis + cs5) (A.1)
Ap = cuo® — cssl® + pu?

Az = —jlalcss + cas)

Az = exa® —css€? 4 pu?

A = 633035 — €33€44Cs5
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Az

Az

Ay

£
F,
F3
Fy

[CnCasC« + ¢35 F1 — c16€33Cas — cas P

[css{cas + €aa) + C33Ca5 — c45]pw

[(e13 + c35) Fa + cysCiecss + c16f2 — Csscus - Cnﬂ]f +

(c13 + cs55)

C33 + Cag + Css)P w?

¢ + ss + cos)p W + pPw?

€33Ce6 + C44C55 —

€33C16 + C45C55 —

(c3s + 645)2

{cag + cas){c13 + €35)

cas(Cag + €45) — caa(c13 + C55)

ces(C13 + Cs5) — C16(c3s + Cas)

Appendix B:

Various coefficients of eq.(32-40) are given by

D23D35 - D33D25
Dl3DSS —D%DIS
D13DZS - DISD'ZS
D31D25 - D21D35
031015 - DIIDJS
DXSDﬂ - DHD‘ZS
D31 D35 — D31 Doy
DHD33 - D31D13
DIID23 - D13D21

D15023 COth(asd) -

D13 Dg_r, coth(agd)

33

+ (13 + Css)F3152+

(
(
(CnCssCso - Clecn)f + {Cn(cas + co6 — Cxe]/’wf +
(

2 4 2cysc16 — Fi = css(css + css) — cunlexs + C44)]P‘-’52"

(A.2)

(B.1)




D15Dg3 COth(O’sd
D15021 COth((’l5d

Dl3D21 coth 03(1

D15D21 coth (11d
D1sD31 coth 01d
D13D21 coth a]d

d

(

(

(

(
D15 D33 coth(azd
(

(

(
Dy3D5, coth{o

S N N

) = Dy3D35 coth(asd)

) - 011025 coth(ald)
DlSDI}I coth O’sd) -

)

Du D35 COth(Qld)

— Dy Dy3 coth{ayd)
D13 D3, coth(aad) —
D15 D3 coth(aad) —
— Dy3D;55 coth{asd)
— Dy Dys coth{asd)
— D41 D35 coth{asd)
— Dy Da3 coth{asd)
~ Dy D3z coth(aad)

Rs) ) -
= ) ) -
= ( R4)D33 Coth(agd)

Ry)D, ) -

(R3 — Rs) D5 coth(asd) —
(R2 — Rs) D5 coth({asd) —
(R1 — Ry) D35 coth(asd) —
(Ry — Rq)Da5 coth{asd) —
(R3 — Rg)Dy3 coth{azd

(R — Rs) D3 coth(aszd
(R

23 coth(asd

(R + R4)Dss
(R1+ Ra)D2s
(R3 + Rs)Dss
(R, + Rs)Dss
(Ry + R4)D3a
(
(
(
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Chapter 2

WAVE PROPAGATION IN
ANISOTROPIC MEDIA DUE
TO TRANSIENT SOURCES

2.1 Introduction

Plane harmonic wave interaction with homogeneous elastic anisotropic media.
in general, and with layered anisotropic media, in particular, have been ex-
tensively investigated in the past decade or so. This advancement has been
prompted, at least from a mechanics point of view, by the increased use of
advanced composite materials in many structural applications. Being both
anisotropic and dispersive, composite materials required in depth understand-
ing of their mechanical behavior. The list of relevant literature is rather long
and we thus refer the reader to selective recent works for further references
[1-6].

The difficulties inherent in the treatment of wave propagation in anisotropic
media in general can be illustrated by considering slowness wave surface meth-
ods for infinite media [1,7-9]. In this analysis. the slowness surface of an

isotropic material consists of two concentric spherical sheets, an inner one rep-




=

resenting the longitudinal wave mode and an outer one representing the two
degenerate transverse modes. In the anisotropic case, we find three general
wave surfaces, one for the so-called quasi-longitudinal wave and two nonde-
generate sheets for the quasi-transverse waves. Moreover, the surfaces will no
longer be spherical in shape but will reflect the elastic symmetry or asymmetry
of the material.

Perhaps the most severe consequence of elastic anisotropy in infinite media
is the loss of pure wave modes for general propagation directions. This fact,
also implies that the direction of energy flow (i.e., group velocity) does not
generally coincide with the wave vector, or wavefront normal. Thus, uncoupled
pure potentials {(such as are found in the isotropic case) are much easier to
treat than the mixed modes characteristic of anisotropic materials. For wave
propagation in directions of symmetry some wave types revert to pure modes,
leading to a simpler characteristic equation of lower order.

A key condition which was found to facilitate the previous analysis is that
at any boundary all wave vectors must lie in the same plane. This requirement
implies that the response of the media will be independent of the in-plane
coordinate normal to the propagation direction. Accordingly the analysis was
conducted in a coordinate system formed by the line load direction and its
normals rather than one determined by material symmetry axes. This choice
leads to a significant simplification in algebraic analysis and computations.

In comparision to the extensive literature on the interaction of plane
harmonic waves with anisotropic media, very little work is available on the
response of such media to concentrated source loading. Here concentrated
sources include point as well as line loads of which harmeonically pulsating and
transient sources are common types of such loading. Understanding the re-

sponse of elastic solids to internal mechanical sources has long been of interest
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to researchers in classical fields such as acoustics, seismology, as well as modern
fields of application like ultrasonics and acoustic emission. It is known that
whenever a material undergoes a local failure, elastic waves are generated due
to the rapid release of localized strain energy. Such radiation, for example, is
known as acoustic emission in the field of nondestructive testing of materials.
In seismology it is of course known as earthquake.

A quick review of available literature on this subject reveals that most of
the work done so far is carried out on isotropic media. The effect of imposed
line load in homogeneous isotropic media has been discussed by several in-
vestigators ever since Lord Rayleigh discovered the existence of surface waves
on the surfaces of solids [10]. An account of the literature dealing with this
problem through 1957 can be found in Ewing, Jardetsky and Press [18]. Most
of the earlier work [13-15] followed Lamb [11,12], who apparently was the first
to consider the motion of semi-infinite space caused by a vertically applied
line load on the free surface or within the medium. It was shown that dis-
placements at large distance consists of a series of events which corresponds to
the arrival of longitudinal, shear, and Rayleigh surface wave. The analytical
approach used in the above mentioned investigations and others [13-15] can
be summmarized as follows : The steady state problem for harmonically pul-
sating source in infinite isotropic media is solved at first and then generalized
to the case of half-space using superposition technique. For transient source
loading results can be obtained from those corresponding to harmonic ones by
a Fourier integral approach. The resulting double integral could be evaluated
only by considering large distances.

A modern alternative approach has been suggested by Cagniard [16]. He
showed that a suitable deformation of the integral contour not only resulted in

considerable analytical simplification but led to exact, closed form, alvebraic
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expressions for the displacements as functions of time. Subsequently. many
investigators have obtaired the disturbances due to sources in the isotropic
media by applying Cargniard approach [17]. DeHoop simplified Cargniard’s
method considerably and applied to cases involving impulsive line and point
sources in infinite homogeneous isotropic media [18-21]. Kraut(1963) ap-
plied the Cargniard-DeHoop method for investigating the transient distur-
bance caused by a surface line load in the anisotiopic half-space. Van der
Hijden(1987) investigated the features of the wave propagation in infinite
anisotropic media generated by a mechanical line source [2§].

In this paper, we closely follow the formal developments in previous works
[1-6] and study the response of two anisotropic systems to transieut buried line
loads. This analysis include infinite and semi-infinite systems. The foregoing
illustration shall be carried out on ani ~t.opic media possessing monoclinic
or higher symmetry. The load will be in the form of a normal stress load
acting at an arbitrary direction in the plane of symmetry of the material. One
then uses a building block approach in which one starts by driving results
for an infinite media. Subsequently one obtains the results for the half-space
employing superposition of the infinite medium solution together a scattered
soluti. - rom the boundary. The sumn of both solutions has to satisfy stress
free boundary conditions thereby yielding to complete soluticus. Consequently
explicit solutions for the particle displacements in both systems are obtained
using Cargniard-DeHoop contour.

This work will accomplished by using the linear transformation approach
in which one identifies the line lead with the r; direction. This implies that all
involved field variables will be independent of the &, dirertion. Nevertheless.
and in general, one has three nonvanishing particle displacements. Material

systems of higher symmetry, such as orthotropic, transversely isotropic, cubic.

33




’

Xq 3 X,

Figure 2.1: A applied line load in an anisotropic infinite media

and isotropic are contained implicitly in the analysis. Numerical results are
demonstrated, drawn from concrete examples of materiats belonging to sev-
eral of these symmetry groups. It is found that for orthotropic and higher
symmetry materials where the remaining two principal axes lie in the plane of
symmetry, the particle motions in the sagittal and the normal to it uncouple

if propagation occurs along either of these in-plane axes.

2.2 Theoretical development

Consider an infinite anisotropic elastic medium possessing monoclinic symme-
try. The medium is oriented with respect to the reference cartesian coordinate
system x; = [Z,Z3, x43) such that the r is assumed normal to its plane of

symmetry as shown in figure 1. The plane of syminetry defining the mono-
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clinic svimumetry is thus coincident with the ) — ), plane. With respect to this

3 3 1 2 !

primed coordinate system, the equations of motion in the medium are given
L0

b:\v ll]

Sy g 327

do! 2yl

)_LJ__}_f,’:p’(_)_(_l_' (2.1

o’ ! gt? -

and, from the general coustitutive relations for anisotropic media.

’

—_ J A — )y . BN
O, = CoriChis Lk =1,2.3 (2.2
by the specialized expanded matrix form to monoclinic media
' ] ’ ’ ! /
a1 h 2 a3 0 0 cy en
! 7 ! J J i
922 Cla G C3 0 0 c €22
4 ! / / / ’
oyl _ s €3 ¢ 0 0y €33 (2.3)
4 - N3 ! I3 | SN
Th3 0 0 0 ¢, c; U Y23
’ ! 7 ]
713 0 0 0 cy e55 U T3
’ ’ ’ ’ J 1/
912 e € G 0 0 cy N2

where the standard contracted subscript notations 1 — 11, 2 — 22,3 — 33,

4 — 23,5 — 13, and 6 — 12, to replace ¢;;u(e.J. k. 1 =1,2,3) with ¢, (p.q =

'
17

1,2,...,6) are employed. Here o[;, €}, and u; are the components of stress, strain
and displacement, respectively, and p’ is the material density. In Eq.(1.3).
¥:; = 2e;; (with i # j ) define the engineering shear strain components.

In what follows, one considers the response of the infinite medium to a
uniform transient (time dependent) line load applied along a direction that
makes an arbitrary azimuthal angle ¢ with the r} axis. That is, the direction
¢ = 0° coincides with the reference coordinate r}. Since, as was pointed out
in the introduction, the response of the medium to such a wave is independent
of the applied line direction. The analysis is conducted in a transformed
coordinate system r; = (z,,z2,x3) formed by a rotation of the plane zj — 2}
through the angle ¢ about the z} direction. For convenience the direction r,

i1s chosen to coincide with the line load direction.
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Since ¢;x is a fourth order tensor. then for any orthogonal transformation

of the primed to the non-primed coordinates it transfornmis according to
, ; 7 N i
Cij/\‘l = Jim/djngkof}lpcmnop (3';,
where ,3;; is the cosine of the angle between r; and r,. For a rotation of angle

¢ in the r} — r, plane, the transformation tensor .3, reduces to

cos¢ sing 0
J,=1{ —sin¢g cosd 0 (
0 0 1

tw
]
—

If the transformation (1.5) is applied to Eq.(1.3), one obtains

o1 e ¢z ¢z U 0 ¢ €11

g ¢z ¢ ¢ 0 0 e €

g | _ | ©i3 €3 €33 0 0 ¢ €33 (2.6)
023 0 0 0 cy s O Y23 B
013 0 0 0 cy5 c55 0 713

T12 ci6 Cw €3 O 0 T2

1

where the relations between the c,, and ¢, entries are listed in [3]. Notice
that, no matter what rotational angle ¢ is used, the zero entries in = ..(1.3)
will remain zero in Eq.(1.6). In terms of the rotated coordinate system ry.

momentum equations can be written in the form

80; 62{ a -
EZJ-{-ﬂ:Pa;; (2.7)

As mentioned earlier, in the rotated system, the elastic wave equations, for
wave propagating in the z; — z3 plane, are independent of r; . Nevertheless.
the particle motion can generally have three nonzero components uy, u,, and
uz. The u, displacement can be identified as belonging to the horizontally
polarized (SH) wave. Here, the equations describing these three wave motions

are coupled in accordance with

Uz T Pzt T 02 T T gl

Juy
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(‘) . () . (')zu 1

) z +EK€; + r,s)@]u:s = pon N By
[ ‘%)fo + e gl + o + o g
| | +£§{(C:u; + 645);'%]"3 = p ()()2;:2 — [z (3b)]
5%[(013 + C.ss)'b%“]ux + 5%;[(6}() + ¢45) )6?2]112 |
fi is chosen to be of the form
fi = Q.6(x1)8(x3 — 25) F(t) (2.9)

2.3 Source characterization

Using the above geometric arrangement. one describes the dirc delta line load
as body force function located at the arbitrary location (z3 = z§ ). This choice
of source location is arbitrary and is not necessary fcr the cases of propaga-
tion in either the infinite nor the semi-infinite media. However, as will be
demonstrated, this choice will lead to great simplification in the algebraic ma-
nipulation for the propagation in the plate. Solutions to the present problem
can be accomplished by following the procedure used by Achenbach [32]. Ac-
cording to this procedure, the infinite space can be thought of as consisting
of two semi-spaces whose artificial iuterface contains the applied load. Thus
the upper half-space occupies the region z3 > z§ whereas the lower half-space
occupies the region z3 < z§. As a result of this, appropriate condition must
be specified at the artificial interface.

In order to be able to specify these interface conditions, consider a very

thin "interface” layer extending from z3 = 2§ — 0 to 23 = z§ + 0 ; Then
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start by requiring continuity on the displacement components and their time

derivatives, namely

wlzr )30 = 0 (10a)
a(n 1 L] 7t r o
ua(Zlfs G N (10b)

Integrating Eqs.(8a.b,c) across the interface layer and using the continuity
equations(10a,b), leads to the discontinuity in the displacement spatial deriva-

tives resulting in the following jump conditions.

5 a ra+o
(msggi-*'cﬁgzz){;_o = —@6(x;)F(t) (11a)
ey +euglaly = ~Qublz)F(1) (11b)
L3
p Q
0338 IPJ_(O = —Q36(x)F(t) (Ilc)
I3

Now, consider the special case where ¢y = ¢, = 0 and Q3 =

situation equations (11) reduce to.

du Uy P40 ,
(Cssg_x; + ¢cas g; )Lr%:, = 0 (12a)
u U\ 2P +o
(C458—‘ + cag a;)lngo =0 (12b)
’+o 1:3+o _ 9
Uggir T, = —Q(z)F(t) (12c)

C33 P
81153 Ty=0

Examination of the relations (12a,b) reveals that, if (cycss — c25) does not
vanish { which is the case ), then u; and u; must be at least constant and, in
accordance with (10), equal. This constant is then chosen to be zero and thus
conclude that u; and u, vanish at the interface. Finally, satisfing the normal

stress discontinuity condition (13c) and assigning

O 10 = QA2 e

Css&“hgw = €357
3 '3

p—o = Q8(x1)F(2)/2 (2.13)
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Collecting the above conditions one can summarize the condition at the arti-

ficial interface as

0 1
635— = —5Q8(z) F (1)

Uy = 0
U "‘a—-" 0

72} _ l ]
63381:3 = 2Q5(J1)F(t)

7

for r4 > 25 at oy = 2%

, for r3 < 1§ at 23 = f

2.4 Integral transforms of formal solutions

Following the procedure of [1], let us outline the steps leading to a formal

solutions of Egs.(8a,b,c) for each of the two semi-spaces. Since the body

force has been replaced by the "artificial interface” condition. one can drop f;

from Eqs(8a,b,c). Assume formal solutions followed by applying the Fourier

transform to these equations in accordance with

i ¢
; = / u;e Pdt
0

o .
u, = / u;e 7P dx,
—00

{2.16)

(2.17)

The general solution of the resulting differential equations is then sought in

the form
u, = U;e™P%, 1=1,2,3

leading to the characteristic equation

All AI'Z AIS Ul
A An Agp Uyt =0
A13 1\23 1\33 [,[3
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where the various entries A;; are given in Appendix A. Note from (1.19) that
the A;; matrix is symmetric.

For the existence of nontrivial solutions in {; the determinant in Eq.
(1.19), must vanish giving an algebraic equation of a. This is an alternative
presentation of Christoffel equation [2]. The difference is that one now solves
for a as compared with solving for the phase velocity for a given propagation
direction. Upon setting the determinant equal to zero, one obtains a sixth

order equation in a (cubic in a?) which is written symbolically as
Ara® + Aze’ + Aza® + 44 =0 (2.20)

with its coefficients are given in Appendix B. Eq.(1.20) admts six solutions

for a. These o's have the further properties that
Qy = —Qy, iy = —Qr3, Qg = —g3 (2'21)

Furthermore for each a, e 1ation(18) yields the displacement amplitude ratios
g = Ung/Urg, wy = Use /Uy

__AnAzs — A
Ai2Agz — Aplps

A2Agz =/ 13A22

" AzsAzs — ApAsg

vy =

'UJq =

Finally, invoking superposition, one can write the formal solutions for the
displacements of equations (8a,b,c) and their associated stress components

using Eq.(1.6) as

6
(i, i, i3) = D (1, vg, wy )y e P33 =75) (2.22)
g=1
6 P
(033,013, 023) = Z p(Dig, Do, D3q)L"1q6"m"(m—r”) (2.23)
q=1




where

(see Ref.[2])

vy = vy, V4
w, = —w;, Wy

Dy; = Dy, Dy,
Dyy = =Dy, Doy

032 :_DBI» D34

The above solutions with their

half-spaces according to

D!q = jnlcs + Cael’q) - C33Q0, W,
Doy = ess(inw, — ag) — casayv,
D3, = cas(ynwy, — ay) — caacyu,,

Vs
We
Dl 6
Do
Dss

g=12...6 (2.26)

il

With reference to equation the relation (20) and to the .\;; entries of Appendix

A and by inspection of equations (20) and (24-26), one recognizes the relations

o5
—ws

Dis (2.27)
_DZS

— Dy

various properties can now be specialized to

both artificial half-spaces by the following steps. Inspection of the above so-
lutions indicate that each consists of three pairs of wave components. each
pair propagating in mirror image fashion with respect to the interface. namely
along positive and negative rj-directions. Since propagation is expected to
emanate from the interface into both media, we arbitrary reserve ¢;,q;. and
gs for the lower half-space; the remaining one’s, namely described with g¢,. q4,

and gg for the upper one. We list the formal solution in the lower and lower

(1,1, 13) = Z (l,v,,,wq)Ulqe‘P"q‘“—ff) )
9=1,3,5 » > 25 S ‘r';;
(633, 013,023) = z P(Dig, Dy, D:}q)Ulqe—p%(xr 3) o
q=1,3,5 )
(1,8 d3) = Z (17quwq)Ulqe-p%(rs—Ig) )
q=2,4.6 > 23 .
- e . oy ‘ 4
(0.33, 7135 023) = Z p( Dl'h D?‘h D.’iq)[«"qu Pﬂq(.t;; r3)
q=2.4,6 )
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Specialization of formal solutions to infinite media

At this point, a formal solution of the field equation in a monochnic medinm
has been presented. The amplitudes {7, are the unknowns. The amplitudes
{1, will now be determined by implementing the artificial interface conditions
(1.14-1.15). To this end. if (28) 15 subjected to the conditions (14) and (29) to

(15). one finally solves the displacement amplitudes as

U=l = (vs— '/‘3)F(Y))(2/(3(‘33[)!‘1711)) (30a)
(,-rlg = "["1-1 = (I'l — US)[:—.(I))(J/(:.).(‘f}_'}[)y‘"l[)) (3(”))
Uis=-Uw = (v3=v)F(p)Q/(2e33D0np) (30c)

where
Dy = vilagw; — asws) + vy(asws — apey) + vsloqwy — agieg)(2.31)

It is interesting to note that D,,, = 0 defines an equivalent Christotfel char-
acteristic equation for the propagation of bulk waves in the medium. With
these solutions for the wave amplitudes. solutions in the upper region can he

written in terms of ¢ = 1,3.5 as

(&l g, '13) = Z (“ 1, —Ug. 11)7){_'1q(_>’1’“7(1'.¥—r1)
7=13,5 (

A e r —pagltPer
(033.013.03) = Z =Dy Doy, D3y )¢ Pogley =)

=135

t<
P
[V

In summary, solutions (28) and (32) with the amplitude solutions (30} uniquely
define the propagation fields in the lower and npper “artificial” semi-spaces.
In other words, their combination constitute the total solutions for the mfinite

medinm.
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3773

Figure 2.2: Semi-infinite media

Specialization of formal solutions to half-spaces

One now adapts the solutions of the infinite media (2.28) and (2.32) for solution
of the case where the free boundary is intercepts the propagating waves at
some arbitrary location parallel to the plane r3 = 0. Assuming that the free
boundary is located at 3 = —d as depicted in figure 2. The implication is that
the free boundary is located in the upper region and thus can only interfere
with the propagation fields in the negative rs direction. For this case, the
solution (2.32) will constitute an incident wave on free surface. As a results
waves will reflect from the free boundary and propagate in the positive rj3
direction. Thus, appropriate formal solutions for the reflected waves can be
adapted from the solution (2.28) in accordance with {Note now that r} does

not appear because solutions are referred to the origin x3 = 0)

(05, 65,85) = 32 (1, vgyu,)U], e~ (2.33)
7=1,3,5

(033,013, 033) = Z P(Drgs Dog, D3g)UT e7779% (2.34)
q=1,3.5
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With this the total solution for the semi-space (designated with superseript
's’) which is required to satisfy the stress free bonndary condition is obtained

by superposing the incident waves and reflected waves in accordance with

(B3, 85.85) = 2 (=1=vg, )} e 77050
q=1,3,5 (‘) }-))
+ Z 1»Uq wq Ur —pagr3 Z.
9=1,3,5
(&:‘;3,&‘133,&:;3) = Z p th‘ qu’ ng)(,(‘)e‘*l’ﬂq(r{;-l‘])
IoL3s (2.36)
+ Z 14 qua DZq, D3q)( —paq.r-;
q=1,3.5
The boundary condition is given by
013 =23’ =033 =0. at z3=-—d (2.37)

By imposing the boundary conditions (2.37) on Eq.(6), linear system is ob-

tained by
DH D]S Dls UlrlEl Rl
D21 Dzs D25 ersEa = Rz (2-38)
D31 DB.’} DSS U1r5E5 RS
where
Ri = —(USDWE] +USDiE; + UY) DisES) (39a)
Ry = (UDDynE; +UYDRE; + U Dy EY) (39b)
Ry = (USDDnE] + U DyE; + UG Dys EY) (39¢)

Using Cramer’s rule solve for the reflected amplitudes obtaining

1
Uy, = DsmlEl(RlG” — R3Gy + RsG) (40a)
U = D EJ(RlG'm — R3Go3 + RBsGiag) (40b)
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U = D E (RiGhs — RaGias + RsGis) (40c)
sm L5
with
E, = et®d ET = g7roelsi+d) =135 (2.41)
and
Dsn = D11G1i — DG + D31Gay (2.42)

Where the G,, are given in Appendix B. Note that D,, = 0 defines the
characteristic equations for the propagation of Rayleigh (surface) wave on the

free surface [1)

2.5 Cargniard-DeHooop contour variation
Infinite media

Now consider the transformations back to the time-space domain using Carg-
niard DeHoop method. Choose F(t) as the delta function 6(t) Laplace trans-
form of which is equal to 1. Then, consider the Laplace transform of u;. iy is

obtained by
o] . < .
Iriy, = / U“e—p(mra—mrx)dn + / L/'me"p(“:‘“_”f‘)dn—#-
/oo Ulse*P(asra-jnl‘l)dn (2'43)
—00
Since, next one wishes to carry out the integration with respect to  along a cer-
tain contour in the complex n-plane that deviates from the positive imaginary
axis, extend the definition of the relevant integral into the complex 5-plane

by analytic continuation away from the imaginary n-axis. This deformation

of the integration contour is only valid if no singularities are crossed. One
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can prove (Burridge 1970) that the only singularity in the 5-plane are: (a)
branch points on the imaginary axis where up- and down-going waves meet:
(b) possible branch points off the imaginary axis where other two upgoing
or downgoing waves meet; (c) poles on the imaginary axis to the lowermost
point, and to the uppermost branch point (The present of poles is linked to the
existence of interface waves at one or more of the interfaces that are present
in the configuration; the poles do not occur in the case of an infinite homoge-
neous solid). The singularities of type (b) are no obstruction to the contour
deformation process as long as summations of the contributions of the relevant
three generalized rays are taken into account by adding the results from the
three contour integrals. Thus. in the deformation process one only has to as-
sure that one does not cross any of the branch points on the imaginary n-axis.
Now, change the contour of the n integration from the positive imaginary axis
in the complex n-plane to the Cargniard-DeHoop contour, parameterized by
the real time-variable t running from ¢,, the arrival time of a certain wave. to
infinity. This integral can be recognized as the Laplace transforms of certain
explicit functions of time, thus the inverse transforms by inspection as detailed
in Achenbach(32]. The integration in the complex n-plane is carried out along

the (in general, six different) paths where
t = ar; — jnr, (2.44)

with t real and positive. The paths that are traced by these different 5 as t
increases are the C'argniard-DeHoop contour. The Cargniard-DeHoop method
is based on the following elementary property of the one-sided Laplace trans-

form: for given Laplace transforms,

[§
e
it
—

x>
i; :/ wi(zy, 3, t)e”Pdt (
t

9




the inverse of the integral is exactly of the form of
ui = ui(xy, r3,t)H{t — tq) (2.46)

where H(t-tq) is the Heavyside step function. Equatinn (2.44) is written with
respect to a by

t+j7}$1
o = —mm
L3

(2.47)

Substitution of (2.46) into the characteristic equation (40) yields the sixth

order polynomial defining the Fourier parameter 7
Qzy,23,t,7) =0 (2.48)
where
Qzy, 23,t,m) = Ben® + Bsn® + Ban* + Ban® + Ban® + By + Bo(2.49)

The coefficient B; is given in Appendix A. The distinct six roots of n are
obtained from (2.47) with complex coefficients, which is the function of the
spatial variables (z,,z;3) and time (t). The six root of 1 is composed of three
parabolas with respect to time t for a certain position (zy,z3), when they
are plotted as real 5 versus imaginary 7, and they are symmetric about the
imaginary n axis. In the interesting range of time, the n curves form three
branches. Each of the parabolas is associated with six distinct roots of a from
the characteristic equation (20}, three of which correspond to the lower half-
space and others to the upper half-space, because of the boundedness of the
waves. Each of the three n represents a separate wavefront.

Now the inverse Laplace transform can be obtained by mere inspection of
(3.25)-(3.26) to be

ony
Jat

47"0.13u _ [(Us - Ua)(,l,r)(')’lr (vs — va)(

Q 1 Dum at B Dum

n) JH(t - )+




e N -
[(Ul“vs)(,;)dnz _(’1 Ln)( "‘(}’h][{

; f— b+
D ot D, T2) ot ( £2)
Uy — U ont vy — U na
{()3[] l)(773+) .77)[3 - ( JD l)(’h—) ()’: }HU — t3) {38a)

where t4, £y, and t3 are the arrival times of the various wavefronts. In other
words, they are the times that correspond to the values of the imaginary -
axis intercepts of the three branches of 7. The notation 7 denotes the branch
of n; to the right side of the imaginary p-axis and 7 denotes the branch of
n; to the left side of the imaginary n-axis. by using the same technique the

displacement u, and uz are obtained by

4/; Vg -~ U: 6+ )g — U 8*. \
Té”uz - [ﬁ%—@vl(rﬁ) - —(”D “’)vm:{)%t‘ﬂ Hi—t)+
(vy — vs) + oy (v —vs) - O
[ Dym va(ne )75 — Do )% JH(t = )+
vy — v ont vy — U ons o
(Lm0 ) T8 ) ) Py gy )
ire Vs —u—mv) ont v Tu,) _.ony
Gt = Bl G = S ) A - )
- ont - v, _.On;
[@lﬁ‘ls“)ws(f);) 87: - (le 5)‘“3('12 )*g:’]H(t- t2)+
(w3 =) L0 (v—w) o=\ On3 :
[ Dum U/5(773) at Du,n u‘-')(r]fl) at JH(t t'x) (';SC)

Half-space media

Employing the above procedure, integral transform solutions of Eq.(35) in the
half-space are inversely transformed back to the space-time domain. However,
It is impossible to consider the transient waves in the whole half-space by
using Cagniard-DeHoop method, since the order of the exponential is the

linear function of aj, a3, and as. Fortunately, one can investigate the surface
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waves on the free surface. i.e., ry = —d. The reflected waves of Eq.(33) for the

" are simplified

case of r§ = 0 and £y = —d that is designated as superscript
by

2(‘.‘33{)“"1 Dsm “rs

QF im 3 (Dll(l" D»,‘("i Dg] '“) (—I’uw!_%_

)
(vy — 05} (D13GY — DGy — DGy e e
(3 = 1 )(DisGY = DasGl = Das(iy)e ™ (2.50)
= (v5 — ) DGy + Dy Gy + Dy G)e "M 4
(1 = s ) D1alGy + DGy + D3y )e mpond 4
(v3 = 01 )(DysGY + Dos(Fy + Das(Gh)e ™ (251)
denDDun (ot Db B

- o= (vs
QF 3m ( : ,
(v1 = 0s)(D13GY — DygGy — DygGy)e ™™+

It
!

2033 Dum Dsm s
QF 2m

(v3 = ) D1sGY = Dy G — DygGiye ™™t (2.52)
with
3 3 3
Gi=3 Gy GI=3 Gpup GE=Y Gy, (253)
9=1 g=1 7=1

where G, is given in Appendix C. Now the particle displacements are obtained
by superposing the incident waves on the free surface of Eq.(29) and reflected
waves on the {ree surface of Eqs.(50-52). Now, the remaining task is to apply
Cagniard-Dehoop method the same as infinite media. The result for uj are
given by

4 T3 s

Q

vy — v u o o i
{L—D_L)(l + (DuGY = DGy = D G5)[ DoY) ;Itl
,_m(vr"m)(l-}-([)n(u“sz(rz“‘Dn ) Do) '7;'”71]// t=t)+

Dum
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[(le:,:S)“ 4+ (DGY — DGy — D;,;;GT;)/DS,“)('I;}*)%"!{

1 4 (DG = DG = D) Do 07 ) B (0 = 121+
[(U‘})val)“ 4+ (Dy5G* = DysG¥ — Dys(G2)/ D )(’1;)%;’%

US04 4 (044Gt~ DasG Do) Do 0 2 a2

The remaining displacements uj and uj will be obtained by similiar procedures.

2.6 Numerical illustrations and discussions

In this section numerical illustrations of the above analysis are given. Let’s
choose for our illustration a cubic material. The microstructure of this partic-
ular material has been extensively studied and models predicting its effective
anisotropic properties are available elsewhere [1]. The cubic material of InAs

is given with respect to the reference coordinate system r! as

0 0 0 0 39.59
0 0 0 0 0 39.5

8329 4526 45.26 0 0 0
1526 83.29 45.26 0 0 0
, 1526 4526 83.29 0 0 0 o,
% = 0 0 0 39.59 0 o | X107 [N/m?]
0
9

with p = 5.67 g/cm?3. For a rotation of ¢ = 30°, for example, these properties

transform to

51.20 3628 4.03 0 0 36.13
3628 51.20 403 0 0 36.13
, | 403 403 1600 0 0 0.3 0
G = 0 0 0 664 0 o | X107 [N/m?]
0 0 0 0 6.6 0
36.13 3612 031 0 0 40.02

Py |
X




which confirms the earlier conclusion that the transformed matrix takes the
format of monoclinic symmetry. Having chosen the material let’s smmmarize
a “flow chart” like procedure for our subsequent calculations.

After specifying the azimuthal angle é (namely, the line load direction)
we proceed in the first step to evaluate 5's from the sixth order polynomial
(49) for given time and location (z, z3). While time (t) is marching from 0,
n's have three pairs of complex conjugates for t > t5, two pairs of complex
conjugates for ¢, <t < t3, and a pair of complex conjugates for {;, < t < t,.
t, represents the arrival times of three kinds of wave. As the » doesn’t have
a pair of conjugate, displacements and stresses are equal to zero. The arrival
times of three kinds of waves are collected with respect to arbitrary direction
of wave propagation in r; — r; plane. The arrival times, the energy slowness.
corresponding to arbitrary angle of ¢ for the cubic material are shown in tigure
5-8. However, the cubic material has cuspidals in the plane of arrival time
that represents lacunae, in which the elastic energy is zero. In the cuspidal,
the material has as many as five arrival times. The number of arrival times.
therefore, are dependent on materials. This agrees with [21]. The inverse of
the plane of arrival time is the plane of the elastic energy, which shows the
energy fronts of the wave propagation in the infinite media. Figure 5-8 shows
the variation of energy front corresponding to azimuthal angle. This energy
plane is exactly same as that calculated by the plane of slowness.

Next step is to solve the characteristic equation. One then has to decide
which of the a;; correspond to n;, i = 1,3,5. If one determines the «,, from
a’s that match with a of equation (27), the order of other two a,,.7 #
does not affect to the numerical results. The sign of Re(a,,) follows sign of
Re(w,), However, if the identification of the a’s is in error, the final results

of the displacements will clearly indicate that something is amiss. Lacking
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the proper identification of the a's the calculated displacements will contain
imaginary parts, a violation .. the condition for the existence of the Laplace
transform. Therefore, only the proper identification of the a’s will yield purely
real displacements so that the existence condition of the Laplace transform is
satisfied. Of course once the existence condition is satisfied then the validity
of the identification scheme was required since all of the explicit solutions for
cubic equations "mixed” roots for the various of the parameter . Then the
displacement ratios are calculated. Finally, displacements are determined by

explicit solution of (31).

Response of infinite media

Numerical results for cubic medum of InAs with ¢ = 30° are shown in figure 3-
4. Figure 3a shows the slowness curves and the direction of wave propagation
10° and 3°. Imaginary part of n variation with respect to time is shown in
figure 3b or 4a. Thus designating t,,;,13,14, and t5 as the arrival times of
various wave forms in order from figure figure 3b or 4a. The wave along the
paths of 5 corresponding to ¢; <t < ¢, or t > t; represent quasi-longitudinal
wave. The wave along a 77 of t > t4 represent quasi-vertical shear wave. The
wave along a n of t > t5 represent quasi-horizontal shear wave. The time
interval of ¢, <t < t; represents ‘lacunae’ that all the disturbances are zero.
Figures 5-8 show numerical illstrations corresponding to the azimuthal
angle of the chosen several material systems : (a) variations of the energy
flows, (b) energy slowness curves, and (c) displacement fields. In fact. the
energy slowness curves show the arrival times for the various wave forms.
Both energy (a) and energy slowness (b) curves are based on the slowness
curves [7]. {c) present snap shots of absolute value of radical displacement

field at fixed time (¢ = 0.2 microsec). A spatial grid of 100x100 points are

o
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generated for the first quadrant. The remaining quadrants is then generated
by the mirror of the first quadrant . The vertical line load is located at the
origin. The origin is located at the center of the picture. Since the medium
is homogeneous. the wave field does not change as it propagates. The color
scheme runs from white (minimum} to black {maximumj. In this picture we
can clearly recognize the wave curves (three wave fronts and lacunae). This
displacement intensity pictures agree with the energy flows (a}).

The variations of the displacement fields corresponding to azimuthal angle
for the cubic material of InAs are shown through figure 5-8. Very sharp dis-
placement intensity and lacunae is presented in figure 5 in the cse of azimuthal
angle ¢ = 0°. As the azimuthal angle is increased by 10°, the third wave front.
quasihorizontal shear wave is more clear and the lacunae disappears. We can
not get the good numerical results arround 90° direction because of contour

sigularity of integral (47).

Response of half-space media

In this section, numerical results in half-space media are discussed. The first
case is to evaluate the response generated by an internal line load. One choos-
ing for our illustration a cubic material of the perturbed steel, the material

properties are given with respect to the reference coordinate system z. as

278.74 33.00 33.00 0 0 0
33.00 278.74  33.00 0 0 0
) 33.00 33.00 278.74 0 0 0 o
€ = 0 0 0 81.91 0 o | ¥ 10 [N/m?]
0 0 0 0 8191 0
0 0 0 0 0 81.91

with p = 1.7 g/em®. Figure 9 show a slowness curves (a) and displacements

versus time, u; (b) and u3 (c), for ¢ = 30°. The receiver is located at (2.0,
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Figure 2.3: Various responses due to a line load in the infinite cubic medium of
InAs (¢ = 30°) : (a) Wave propagation direction (5°) on the slowness surface
; (b) Imaginary part of n variation versus time (microsec) ; (c¢) Horizontal

displacement u versus time (microsec) along § = 5°
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Figure 2.4: Various responses due to a line load in the infinite cubic medium of
[nAs (¢ = 30°) : (a) Imaginary part of n variation versus time (microsec) ; (b)
Transverse displacement w versus time (microsec) along 8 = 5° ; {(c) Vertical
displacement w versus time (microsec) along 8 = 5°
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Figure 2.5: Displacement field due to a line load in the infinite cubic medium
of InAs (¢ = 0°) : (a) Slowness surface ; (b) Energy slowness ; (c) Energy flow
; (d) Snap shot of displacement field at t=0.2 microsec
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Figure 2.6: Displacement field due to a line load in the infinite cubic medium

of InAs (¢ = 10°)

(a) Slowness surface ; (b) Energy slowness ; (c) Energy
flow ; (d) Snap shot of displacement field at t=0.2 microsec
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Figure 2.7: Displacement field due to a line load in the infinite cubic medium
of InAs (¢ = 20°) : (a) Slowness surface ; (b) Energy slowness ; (¢) Energy
flow ; (d) Snap shot of displacement field at t=0.2 microsec




0.0, 0.2)(mm). Sharp variations of displacements are due to the arrival of
the various waves. As time increases, the displacements approach to zero.
which is consequence of the direc delta function. The res: '« in figure 9 are as
expected physically. A strong peak is observed that shows the existence of a
surface or a Rayleigh wave. We can clearly recognize quasi-longitudinal wave.
2 quasi-shear waves, and a surface wave.

The second case is to numerically calculate the response generated by the
line load on the surface. The surface is free from tractions except the line
load along the z;-axis. Many researchers (Tayvlor, Krout, etc) investigated
this problem for the various line load such as direc delta function or heavyside
step function with respect to time. Analytical results for the heavyside step
function surface line load in the half-space media are given in {29]. We present
numerical illustrations of the snap shot for the displacement fields generated by
direc delta line load. Figure 10 present snap shots of radical displacement field
at fixed time (¢ = 0.2) for isotropic steel (a), perturbed steel of ¢ = 0° (b), and
perturbed steel of ¢ = 30° (c¢). A spatial grid of 100x100 points are generated
for the first quadrant. The fourth quadrant is then generated by the mirror
of the first quadrant. The color scheme runs from white (maximum) to black
(minimum). In these pictures we can clearly recognize the wave curves (head
wave, surface wave, and three bulk wave forms). The surface wave attribntion
is shown at inside of longitudinal wave front and near to the horizontal plane

surface.
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Figure 2.8: Displacements on the surface due to an internal line load in the
semi-infinite cubic medium of perturbed steel (f=1.5, ¢ = 0°), r/d = 5 :
(a) Slowness surface ; (b) Horizontal displacement u versus t/r ; (b) Vertical
displacement w versus t/r
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Figure 2.9: Displacements on the surface due to an internal line load in the
semi-infinite cubic medium of perturbed steel (f=1.5, ¢ = 30°), r/d = 5 :
(a) Slowness surface ; (b) Horizontal displacement u versus t/r ; (b) Vertical
displacement w versus t/r
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Figure 2.10: Snap shot of displacement field due to a surface line load of the
semi- infinite medium at t=0.2 microsec : (a) Displacement field for steel ; (b)

Displacement field for perturbed steel ( f=1.3, @ = 0°) ; (c) Displacement field
for perturbed steel (f=1.3, ¢ = 30°)




Bibliography

(1]

(7]

A. H. Nayfeh, "The General Problem of Elastic Wave Propagation i Mul-
tilayered Anisotropic Media”, Journal of the Acostical Society of America.

89. 4,1521- 1531, 1991.

D. E. Chimenti and A. H. Nayfeh, "Ultrasonic Reflection and Guided
Waves in Fluid-Coupled Composite Laminates”™. J. Nondestructive Eval-

uation, Vol. 9, No. 2/3. (1990)

A. H. Nayfeh and D. E. Chimenti, "Free Wave Propagation in Plates of
General Anisotropic Media,” J. Appl. Mech.. Vol.55, 863-870(1939).

A. H. Nayfeh and D. E. Chimenti, "Ultrasonic Wave Reflection from
Liquid-Coupled Orthotropic Plates with Application to Fibrous Compos-
ites,” J. Appl. Mech., Vol.53, 863-870(1988).

A. H. Nayfeh and D. E. Chimenti, "Propagation of Guided Waves in
Fluid-Coupled Plates of Fiber-Reinforced Composites.” J. Appl. Mech..
'0l.83, ppl1736(1988).

D. E. Chimenti and A. H. Nayfeh, " Ultrasonic leaky waves in a solid plate

separating fluid and vacuum media,” J. Acous. Soc. Am, Vol.85(2). 1939

J. L. Synge, "Elastic waves in anisotropic Media”, J. Math. Phys.. Vol.35.

32:3-334(1957)

63




(8] F. L. Fedorov, "Theory of Elastic Waves in Crystals, Plenum. New York.

(1968).

9] M. L. P. Musgrave, "Crystal Acoustics™. Holden Day. San Francisco.
(1970).

[10} Lord Rayleigh. "On the free vibrations of an infinite plate of homogeneous

isotropic elastic materual, Proc. London Mathematical Society. 20. 225

(1889)

[11] H.Lamb, "On the Propagation of Tremors Over the Surface of an Elastic
solid”, Phil. Trans. Roy. Soc..London. ser.A. Vol.203, 1-42(1904).

[12] H.Lamb, "On Waves in an Elastic Plate”, Phil. Trans. Roy. Soc., London.

Ser.A, Vol.93, 114-128(1917)

{13] E. R. Lapwood. "The Disturbance due to a Line Source in a Semi-infinite
Flastic Medium”, Phil. Trans. Roy. Soc., London. Ser.A, Vol.242. 9-
100(1949).

[14] G. Eason, J.Fulton and I. N. Sneddon, " The Generation of Wave in an Infi-
nite Elastic Solid by Variable Body Forces” ,Phil. Trans. Roy. Soc..London.
Ser.A, Vol.248, 575-308(1956).

[15] C. Pekeris and H. Lifson, "Motion of the Surface of a Uniform Elastic
l{aif- Space Produced by a Buried Pulse”, J. Acous. Soc. Am., Vol.29,
1233-1238(1957).

[16] L. Cagniard, "Reflection and Refraction of Progressive Seismic Waves”

(trans. by E. Flinn and C. Dix. McGraw-Hill, New York, 1962)

69




[17)

(18]

[19]

23]

24]

[25]

[26]

W. W. Garvin, "Exact Transient Solution of the Beried Linne Source

Problem™, Proc. Roy. Soc., London, Ser. A, Vol.234, 528-5341(1956).

A.T. De Hoop. "A Modification of Cagniard’s Method for Solving Seismic
Pulse Problems™, Appli. sci. Res.. B, Vol.8, 349-357(1960).

M. Shmuely, "Response of Plates to Transient Source”. J. of Sound and

Vibration. Vol.32(4), 507-512(1974)

M. Shmuely, "Stress Wave Propagation in Plates Subjected to a Transient

Line Source”, Int. J. Solid Structure, Vol.11, 679-691(1973)

Y. H. Pao. R. R. Gajewski and A. N. Ceranoglu,” Acoustic Emission and
Transient Waves in an Elastic Plate”, J. Acoust. Sec. Am.. Vol.63(1),

66-105(1979)

E. A. Kraut, "Advances in the Theory of Anisotropic Elastic Wave Prop-
agation™, Rev. of Geophysics, Vol.1, No.3. 401-448(1963).

R. Burridge, "Lamb’s Problem for an Anisotropic Half-Space”™, Quart. J.
Mech. and Applied Math., Vol.23, 81-98(1971).

R. Burridge, "The Directions in which Rayleigh Waves may be Prop-
agated on Crystals”, Quart. J. Mech. and Applied Math., Vol.23, 217-
224(1979).

J. H. Woodhouse, ”"Surface Waves in a Laterally Varying Layered Struc-

ture”, Geophysics. J. R. astr. Soc, Vol.37, 461-190(1974). fh

G. J. Fryer and L. N. Frazer, ”Seismic Waves in stratified anisotropic

media,” Geophysics. J. R. astr. Soc., Vol.78, 691-710(19384)




-1

]

G. J. Fryver and L. N. Frazer, "Seismic Waves in stratified anisotropic
media-2 Elastodynamic Eigensolutions for some Anisotropic System”,

Geophysics. J. R. astr. Soc., Vol.91, 73-101(19387)

J. H. M. T. Van Der Hijden, "Radiation from an Impulsive Line Source
in an Unbounded Homogeneous Anisotropic Medium”, Geophysics. .J. R.

astr. Soc., Vol.91, 353-372(1987).

[29] T. Taylor, "Transient Elastic Waves on Anisotropic Half-spaces™. Ph.D.

30]

Dissertation, University of Cincinnati, 1989

W. Ewing, W.Jardetzky and F. Press, Elastic Waves in Lavered Media.
(McGrraw Hill, New york, 1957)

[31] J. P. Achenbach, Wave Propagations in Elastic Solids, (American

32]

Elservier Pub. Co., New York, 1973)

Y. C. Fung, Foundation of Solid Mechanics, (Prentice-Hall, Englewood
Cliffs, N. J. 1965)

Appendix A

Various coeflicients of characteristic eq.(18) are given by

Apn = 655012 - 011772 - p

Az = cg50® — o9’

Az = —jna(es + cos3)

Ap = cya® - 666772 =P

Ay = —jna(css + cas)

Asz = C33012 - 055772 -p (2.35)




D,

Dan* + Dsp

Din* + Dspn* + Dgp®
Dsn® + Dspn* + Dop*n* + p (2.

()
it
N
~

Appendix B

Various coefficients of polynomial for Cargniard-DeHoop contour are given by

Dyzir} — Dyzial — Dyzf + D7l
Chjt

Cyt* + Dyziz} — Dyxizi + Dgxl
Csjt + Cyjt

Cstt + Cot® — Dexiz} + Doz’
6D1jz1t% + 4 D3j220,t° + 2Dgz3211
Dit® + Dsait* + Dexl + pPal (2.5

I
Wt
-1
p

60,25 + 2Dz3z) — 4Dy3ir}

15D,z — 6Dya%2? + D3

4Dpxiry — 20D, 13

—4D32222 4+ 2Dgz3 1,

D,z2 — 15D,z

—6D3x2z? + D5zl {(2.58)

633035 — €33C44Cs5

C11€33C4a + €55 F) — c16C33cas — cas Fy + (13 + ¢35} F3
[cs5(cas + €aa) + c33€4a — cis]P

[(c13 + e55) Fy + cuscrsCss + c1gF2 — Cgscﬁs - e i)

[(c13 + 055)2 + 2eqs016 — Fi — e557cs5 + ce6) — cr1(caz + cad)lp
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Ds
D+
Dy
D,

Fy
I
F3
Fy

Gn
Gz
G13
G21
Gz

~(c33 + Caa + €55)p°

(c11C55Ce6 — CogCs5)

[er1(css + cos — c24lp

(en + es5 + ces)p? (2.39)

€33Ces + C44Cs55 — (€36 + 045)2
€33C16 + Ca5C55 — (€36 + Ca5)(c13 + ¢55)
cys(cas + cas) ~ caglc1s + cs5)

ces(c13 + 55) — cr6(ca6 + cus) (2.60)

Appendix C

Various coefficients of polynomial for Cargniard-DeHoop contour are given by

Dy3D35 — D33 Do
D33 Dys — DhaDss
Dy3Dqs — D1sDys
D3y D2s ~ D21 D35
Dy Dss — D3y Dys
DisD2n — D11 Das
D31 D33 — D31 Doy
D3y Dz — D1 Dy
D11 Dyz — Di3Dy (2.61)
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